Stock Market Index Data and indicators for Day Trading as a Binary Classification problem
نویسنده
چکیده
Classification is the attribution of labels to records according to a criterion automatically learned from a training set of labeled records. This task is needed in a huge number of practical applications, and consequently it has been studied intensively and several classification algorithms are available today. In finance, a stock market index is a measurement of value of a section of the stock market. It is often used to describe the aggregate trend of a market. One basic financial issue would be forecasting this trend. Clearly, such a stochastic value is very difficult to predict. However, technical analysis is a security analysis methodology developed to forecast the direction of prices through the study of past market data. Day trading consists in buying and selling financial instruments within the same trading day. In this case, one interesting problem is the automatic individuation of favorable days for trading. We model this problem as a binary classification problem, and we provide datasets containing daily index values, the corresponding values of a selection of technical indicators, and the class label, which is 1 if the subsequent time period is favorable for day trading and 0 otherwise. These datasets can be used to test the behavior of different approaches in solving the day trading problem.
منابع مشابه
Ranking and Managing Stock in the Stock Market Using Fundamental and Technical Analyses
The stock selection problem is one of the major issues in the investment industry, which is mainly solved by analyzing financial ratios. However, considering the complexity and imprecise patterns of the stock market, obvious and easy-to-understand investment rules, based on fundamental analysis, are difficult to obtain. Fundamental and technical analyses are two common methods for predicting th...
متن کاملShort-term Prediction of Tehran Stock Exchange Price Index (TEPIX): Using Artificial Neural Network (ANN)
The main objective of this study is to find out whether an Artificial Neural Network (ANN) will be useful to predict stock market price, which is highly non-linear and uncertain. Specifically, this study will focus on forecasting TSE Price Index (TEPIX) as the most significant index of Iran Stock Market. Many data have been used as inputs to the network. These data are observations of 2000 day...
متن کاملRanking and Managing Stock in the Stock Market Using Fundamental and Technical Analyses
The stock selection problem is one of the major issues in the investment industry, which is mainly solved by analyzing financial ratios. However, considering the complexity and imprecise patterns of the stock market, obvious and easy-to-understand investment rules, based on fundamental analysis, are difficult to obtain. Fundamental and technical analyses are two common methods for predicting th...
متن کاملStock Market Modeling Using Artificial Neural Network and Comparison with Classical Linear Models
Stock market plays an important role in the world economy. Stock market customers are interested in predicting the stock market general index price, since their income depends on this financial factor; Therefore, a reliable forecast in stock market can be extremely profitable for stockholders. Stock market prediction for financial markets has been one of the main challenges in forecasting finan...
متن کاملارائه شاخصی جدید برای انعکاس رفتار بازار سهام با استفاده از رویکرد تحلیل شبکههای پیچیده
شاخصهای منعکس کننده رفتار بازار سهام یکی از مهمترین عوامل تأثیرگذار بر تصمیمات سرمایهگذاران در بازارهای مالی است. اغلب سرمایهگذاران در بورس اوراق بهادار تهران به شاخص کل بورس توجه دارند که تمامی شرکتهای پذیرفته شده در بورس را در بر میگیرد. این مطالعه به معرفی شاخصی جدید با استفاده از روش شبکههای پیچیده میپردازد. شبکههای پیچیده مطالعه همبستگی قیمتهای بازار سهام را به خوبی فراهم میآور...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2017